Skip to content

二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例 1:

输入: root = [3,9,20,null,null,15,7]

输出: [[3],[9,20],[15,7]]

示例 2:

输入: root = [1]

输出: [[1]]

示例 3:

输入: root = []

输出: []

提示:

  • 树中节点数目在范围 [0, 2000]
  • -1000 <= Node.val <= 1000
js
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[][]}
 */
var levelOrder = function(root) {

};

参考答案:

方法1.广度优先遍历

  • 思路:准备一个队列,将根节点加入队列,当队列不为空的时候循环队列,每次循环拿到当前队列的大小,在循环当前层的每个元素,然后加入输出数组ret中,如果这个元素存在左右节点则将左右节点加入队列
  • 复杂度分析:时间复杂度 O(n),每个点进队出队各一次,故渐进时间复杂度为 O(n)。空间复杂度O(n),队列中元素的个数不超过 n 个
js
var levelOrder = function(root) {
    const ret = [];
    if (!root) {
        return ret;
    }

    const q = [];
    q.push(root);//初始队列
    while (q.length !== 0) {
        const currentLevelSize = q.length;//当前层节点的数量
        ret.push([]);//新的层推入数组
        for (let i = 1; i <= currentLevelSize; ++i) {//循环当前层的节点
            const node = q.shift();
            ret[ret.length - 1].push(node.val);//推入当前层的数组
            if (node.left) q.push(node.left);//检查左节点,存在左节点就继续加入队列
            if (node.right) q.push(node.right);//检查左右节点,存在右节点就继续加入队列
        }
    }
        
    return ret;
};

方法2:深度优先遍历

  • 思路:从根节点开始不断递归左右子树,透传step层数和res输出数组。
  • 复杂度分析:时间复杂度O(n),n是节点的个数。空间复杂度O(n),n是树的高度。
js
var levelOrder = function(root) {
    if(!root) return []
    let res = []
    dfs(root, 0, res)
    return res
};

function dfs(root, step, res){//每层透传当前节点,层数,和输出数组
  if(root){
    if(!res[step]) res[step] = []//初始化当前层数组
    res[step].push(root.val)//当前节点加入当前层数组
    dfs(root.left, step + 1, res)//step+1,递归左节点	
    dfs(root.right, step + 1, res)//step+1,递归右节点	
  }
}